UNIVERSITY OF PUNE

[4361]-9

F. E. (Common)

Applied Science-II

Physics

(2008 Pattern)

Total No. of Questions: 6 [Total No. of Printed Pages :2] [Time: 2 Hours] [Max. Marks: 50]

Instructions:

- (1) Neat diagram must be drawn wherever necessary.
- (2) Black figures to the right indicate full marks.
- (3) Your advised to attempt not more than 03 questions.
- (4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- (5) Assume suitable data, if necessary.

Constants:

Velocity of light (c) = 3×10^8 m/sec. Mass of electron (m) = 9.1×10^{-31} kg Charge on electron (e) = 1.6×10^{-19} C Planck's constant (h) = 6.625×10^{-34} J-S Q1.

- a) Explain how the wave group is formed, and obtain an expression for a group velocity. [7]
- b) Explain in short, why ψ is not directly related with probability and obtain Schrodinger's time dependent wave equation [6]
- c) Obtain Heisenberg's uncertainty principle in terms of energy and time [4]

OR

Q2.

a) Derive an expression for the energy levels and wave functions of a particle enclosed within infinite deep potential well. Draw the probability distribution curves. [7]

b)	State Heisenberg's uncertainty principle and establish it with the hel single slit diffraction experiment	lp of [6]
c)	For the particle moving with non-relativistic energy, show that the g velocity is equal to the particle velocity.	group [4]
Q3.		
a)	State the properties of Laser and explain construction and working of state laser.	solid [7]
b)	Explain following properties of superconductors.	
	1) Critical magnetic field	[3]
	2) Critical current density.	[3]
c)	State the advantages of optical fiber communication technology over conventional methods	r the [4]
	OR	
Q4.		
a)	What is holography? State its principle. Explain the process of holography recording and reconstruction	aphy [7]
b)	Explain the Meissner effect. Show that superconductors are pediamagnet.	erfect [6]
c)	Explain with the help of energy level diagram	[4]
	1) Spontaneous emission &	
	2) Stimulated emission.	
Q5.		
a)	What is Hall effect? Obtain an expression for Hall voltage and coefficient. State applications of Hall effect.	Hall [6]
h)	11	
D)	Explain any two properties nanoparticles.	[6]

c) Calculate the conductivity of pure silicon at room temperature when the concentration of carriers is 1.5×10^{16} /m³ and the mobilities of electrons and holes are 0.12 and 0.05 m²/v-sec respectively at room temperature. [4]

OR

Q6.

- a) Explain principle, construction and working of solar cell. Explain its characteristic curve [6]
- b) Explain with neat labeled diagram the synthesis of metal nanoparticles by colloidal route. [6]
- c) A silver wire is in the form of a ribbon 0.50cm wide and 0.10 mm thick. When a current of 2Amp passes through the ribbon perpendicular to a 0.80 Tesla magnetic field, how large a hall voltage is produced along the width? The density of silver is 10.5 gm/cm³.

$$(At.wt of silver = 108)$$