Total No. of Questions: 6]

[Total No. of Printed Pages: 7

[4061]-112

F. E. Examination - 2011

ENGINEERING MECHANICS

(2008 Pattern)

Time: 2 Hours

RARY

Instructions:

- (1) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4 and Q. 5 or Q. 6.
- (2) Answer should be written in one answer book.
- (3) Figures to the right indicate full marks.
- (4) Neat diagram should be drawn wherever necessary.
- (5) Assume suitable data if necessary.
- (6) Use of cell phone is prohibited in examination hall.
- (7) Use of electronic non-programmable pocket calculator is permitted.
- Q.1) (A) Knowing that the tension in the cable BC is 145N, determine the resultant of the three forces exerted at point 'B' of beam AB. Refer Figure 1.1. [06]

Fig. 1.1

- (B) The motion of the particle is defined by the relation $x = t^2 (t 3)^3$ m where 'x' and 't' are in meters and seconds respectively. Determine:
 - (a) the time when velocity is maximum.
 - (b) the position and maximum velocity.
 - (c) the distance traveled at t = 12 seconds.

[06]

OR

Q.2) (A) Two quarter circular areas are removed from a rectangular plate AEFG as shown in figure 2.1. Locate the centroid of the remaining area. [06]

Fig. 2.1

(B) A 50 kg body is initially at rest on a 20° inclined plane with coefficient of kinetic friction $\mu = 0.25$. Find the distance and the time body travels before attaining the speed of 15m/s. Refer figure 2.2.

Fig. 2.2

Q.3) (A) A compound beam is loaded as shown in figure 3.1. Find the reactions at the supports 'A', 'D' and 'E'. [06]

Fig. 3.1

(B) Three cylinders are piled in a rectangular ditch as shown in figure 3.2. The weight of cylinder P, Q and R are 130N, 400N and 200N respectively. The radii of cylinder P, Q and R are 100mm, 150mm and 125mm respectively. Assuming all surfaces smooth, determine reactions at all points of contact 'A', 'B', 'C' and 'D'. [07]

Fig. 3.2

- (C) The tennis player serves the ball from height 'H' with an initial velocity of 40m/s at an angle of 4° with the horizontal as shown in figure 3.3. Knowing that the ball clears the 0.914m net height by 152mm, determine: [06]
 - (a) the height 'H'
 - (b) the distance from the net 'd' where the ball will strike the floor.

OR

Q.4) (A) The system of forces acting on a frame is as shown in figure 4.1. Calculate the magnitude and direction of the resultant. Also find the position of resultant with respect to point 'A'. [06]

Fig. 4.1