|--|--|--|--|--|--|--|--|--|--|--|--|

Seat	
No.	

[4161] - 111 May - June - 2012

F.E. (Semester – II) Examination, 2012 **BASIC MECHANICAL ENGINEERING** (2008 Pattern)

Time: 3 Hours

Instructions:

- 1) Answer any one question from each Unit.
- 2) Answer to the two Sections should be written in separate answer books.
- 3) Black figures to the **right** indicate full marks
- 4) **Neat** diagrams must be drawn **wherever** necessary.
- 5) **Use** of electronic pocket calculator is **allowed**.
- 6) Assume suitable data, if necessary.

SECTION - I

UNIT-I

- 1. A) What do you understand by Reversible and Irreversible process? State the causes which make any process Irreversible.

- B) Define and write equations for the following:
 - i) Adiabatic Index
 - ii) Enthalpy.

4

- C) A system contains 0.15 m³ of air at 5 bar and 350° K. A reversible adiabatic expansion takes place till the pressure falls to 1 bar. The gas is then heated at constant pressure till enthalpy increases by 70 KJ. Calculate
 - i) Work done in individual process.
 - ii) Index of expansion if the above processes are replaced by a single reversible polytropic process giving the same initial and final states.

Take for air, $C_p = 1.005 \text{ KJ/kgK}$, Cv = 0.718 kJ/kgk,

R = 0.287 kJ/kgk.

6

OR

2.	A)	State and explain Second Law of Thermodynamics.	6
	B)	Define the following: i) Heat Engine ii) Heat Pump.	4
	C)	A 'Closed vessel' contains 2 kg of carbondioxide at temperature 20°C and pressure 0.7 bar. Heat is supplied to the vessel till the gas acquires a pressure of 1.4 bar. Calculate i) Final temperature ii) Work done on or by gas iii) Heat added iv) Change in internal energy.	
		Assume, $Cv = 0.657 \text{ kJ/kg. K.}$	6
		UNIT – II	
3.	A)	Give classification of I.C. Engine with applications.	6
	B)	Explain with neat sketch working of Window Air Conditioning System. How does split Air conditioner differ from Window Air conditioner? OR	10
4.	A)	How Boilers are classified? State any four mounting and their functions.	6
	B)	Describe with a block diagram and state the applications of the following : i) Double Acting Reciprocating Pump ii) Reciprocating Air compressor.	10
		UNIT — III	
5.	A)	Explain concept of series and parallel thermal resistances in composite slab.	5
	B)	Derive an expression for heat conduction through an infinitely long hollow cylinder.	5
	C)	Compare Thermal and Nuclear Power plants on any four parameters. Draw sketch of Nuclear power plant.	8