UNIVERSITY OF PUNE [4364]-762 B. E. (Computer Engineering)

Examination - 2013

PRINCIPLES OF COMPILER DESIGN (2008 Pattern)

[Total No. of Questions:]

[Total No. of Printed Pages :5]

[Time : 3 Hours]

[Max. Marks : 100]

Instructions :

- (1) Answers to the two sections should be written in separate answer-books.
- (2) Neat diagrams must be drawn wherever necessary.
- (3) Assume suitable data, if necessary.

SECTION-I

Q1	a) Discuss the action taken by every phase of compiler on following	[6]
	string: $A = B*C+D/E$	
	b) Construct Predictive Parser for following grammar.	[8]
	$S \rightarrow a B D h$	
	$B \rightarrow B b c$	
	$D \rightarrow E F$	
	$E \rightarrow g \mid \epsilon$	
	$F \rightarrow f \mid \epsilon$	
	c) What are the advantages and disadvantages of operator Precedence	
	parser?	[4]
	OR	
Q2	a) Explain in detail the Front end – Back end arrangement of compiler	[6]
	design.	
	b) Construct SLR parser for following grammar:	[8]
	$S \rightarrow a SS b$	
	$S \rightarrow a SSS$	
	S→c	
	Show moves of above parser on one valid input string and one	
	invalid input string.	
	c) How YACC handles different types of conflits in parser?	[4]

Q3	a) Differentiate between S-attributed and L-attributed definitions.	[4]
	b) What is need for semantic analysis? Explain type checker in detail.	[6]
	c) Generate annotated parse tree for following expression:	[6]
	a*b-c/e + f	
	OR	
Q4	a) What is attributed grammar? Explain with example.	[4]
	b) Explain bottom-up evaluation of L-attributed grammar	[6]
	c) What is typecasting? What changes should be made in the semantic	[6]
	analyzer to add typecasting?	
Q5	a) Generate three address code for following code fragment.	[8]
	sum=0	
	for (j=1; j<=10; j++)	
	sum = sum + a[j] + b[j]	
	b) Write syntax directed translation scheme for simple assignment	[8]
	statement.	
	OR	
Q6	a) Write syntax directed translation scheme for boolean expression	[8]
	and explain the need of backpatching.	
	b) Generate quadruples and indirect triples for following statement.	[8]
	$a = b^{(c+d)} * f/g$	
	SECTION-II	
Q7	a) Discuss: Static and Dynamic Scope	[6]
	b) Which are different data structures used for symbol table? Discuss.	[6]
	c) Discuss various issues associated with source language.	[6]
	OR	
Q8	a) Write short note: Activation record	[4]
	b) Explain various parameter passing techniques with suitable examples.	[8]
	c) Differentiate between block structured and non block structured	
	languages	[5]
Q9	a) Explain Dynamic Programming code generation algorithm	[8]
	b) Write short note: DAG	[4]
	c) Discuss various issues in code generation.	[4]
	OR	

Q10 a) Construct DAG for following

D = B*CE = A+BB = B*CA = E-D

Which optimization is achieved using this DAG?

b) What is "next use" information? Explain its use in code generation. [6]

[4]

[6]

[4]

- c) Explain the tree labeling algorithm with example.
- Q11 a) Read following piece of code:
 - B1: j = j-1 $t_4 = 4*j$ $t_5 = a[t_4]$

if t₅>j go to B1

which optimization technique can be applied to this code? Explain it in detail.

- b) Explain how loops in flow graph are identified? [4]
- c) Explain fundamental data flow properties. [8]

OR

Q12 a) Write short note: Global optimization[4]b) Explain following optimization techniques: compile time evaluation,
dead code elimination, code movement[6]c) What is "ud chain"? Explain Gen set and Kill set for ud chain.[6]
